首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7287篇
  免费   981篇
  国内免费   920篇
化学   3424篇
晶体学   91篇
力学   487篇
综合类   38篇
数学   475篇
物理学   4673篇
  2024年   15篇
  2023年   95篇
  2022年   154篇
  2021年   206篇
  2020年   262篇
  2019年   215篇
  2018年   217篇
  2017年   213篇
  2016年   333篇
  2015年   288篇
  2014年   339篇
  2013年   541篇
  2012年   487篇
  2011年   640篇
  2010年   425篇
  2009年   485篇
  2008年   491篇
  2007年   509篇
  2006年   452篇
  2005年   345篇
  2004年   302篇
  2003年   308篇
  2002年   266篇
  2001年   201篇
  2000年   198篇
  1999年   120篇
  1998年   143篇
  1997年   96篇
  1996年   108篇
  1995年   95篇
  1994年   92篇
  1993年   78篇
  1992年   69篇
  1991年   64篇
  1990年   50篇
  1989年   42篇
  1988年   34篇
  1987年   35篇
  1986年   24篇
  1985年   27篇
  1984年   15篇
  1983年   7篇
  1982年   15篇
  1981年   11篇
  1980年   10篇
  1979年   16篇
  1978年   11篇
  1974年   7篇
  1973年   13篇
  1970年   4篇
排序方式: 共有9188条查询结果,搜索用时 15 毫秒
51.
Fine-tuning electronic structures of single-atom catalysts (SACs) plays a crucial role in harnessing their catalytic activities, yet challenges remain at a molecular scale in a controlled fashion. By tailoring the structure of graphdiyne (GDY) with electron-withdrawing/-donating groups, we show herein the electronic perturbation of Cu single-atom CO2 reduction catalysts in a molecular way. The elaborately introduced functional groups (−F, −H and −OMe) can regulate the valance state of Cuδ+, which is found to be directly scaled with the selectivity of the electrochemical CO2-to-CH4 conversion. An optimum CH4 Faradaic efficiency of 72.3 % was achieved over the Cu SAC on the F-substituted GDY. In situ spectroscopic studies and theoretical calculations revealed that the positive Cuδ+ centers adjusted by the electron-withdrawing group decrease the pKa of adsorbed H2O, promoting the hydrogenation of intermediates toward the CH4 production. Our strategy paves the way for precise electronic perturbation of SACs toward efficient electrocatalysis.  相似文献   
52.
Double perovskites (DP) have attracted extensive attention due to their rich structures and wide application prospects in the field of optoelectronics. Here, we report 15 new Bi-based double perovskite derived halides with the general formula of A2BBiX6 (A=organic cationic ligand, B=K or Rb, X=Br or I). These materials are synthesized using organic ligands to coordinate with metal ions with a sp3 oxygen, and diverse structure types have been obtained with distinct dimensionalities and connectivity modes. The optical band gaps of these phases can be tuned by changing the halide, the organic ligand and the alkali metal, varying from 2.0 to 2.9 eV. The bromide phases exhibit increasing photoluminescence (PL) intensity with decreasing temperature, while the PL intensity of iodide phases changes nonmonotonically with temperature. Because the majority of these phases are non-centrosymmetric, second harmonic generation (SHG) responses are also measured for selected non-centrosymmetric materials, showing different particle-size-dependent trends. Our findings give rise to a series of new structural types to the DP family, and provide a powerful synthetic handle for symmetry breaking.  相似文献   
53.
The purely chemical synthesis of fluorine is a spectacular reaction which for more than a century had been believed to be impossible. In 1986, it was finally experimentally achieved, but since then this important reaction has not been further studied and its detailed mechanism had been a mystery. The known thermal stability of MnF4 casts serious doubts on the originally proposed hypothesis that MnF4 is thermodynamically unstable and decomposes spontaneously to a lower manganese fluoride and F2. This apparent discrepancy has now been resolved experimentally and by electronic structure calculations. It is shown that the reductive elimination of F2 requires a large excess of SbF5 and occurs in the last reaction step when in the intermediate [SbF6][MnF2][Sb2F11] the addition of one more SbF5 molecule to the [SbF6] anion generates a second tridentate [Sb2F11] anion. The two tridentate [Sb2F11] anions then provide six fluorine bridges to the Mn atom thereby facilitating the reductive elimination of the two fluorine ligands as F2.  相似文献   
54.
Main group systems capable of undergoing controlled redox events at extreme potentials are elusive yet highly desirable for a range of organic electronics applications including use as energy storage media. Herein we describe phosphine oxide-functionalized terthiophenes that exhibit two reversible 1e reductions at potentials below −2 V vs Fc/Fc+ (Fc=ferrocene) while retaining high degrees of stability. A phosphine oxide-functionalized terthiophene radical anion was synthesized in which the redox-responsive nature of the platform was established using combined structural, spectroscopic, and computational characterization. Straightforward structural modification led to the identification of a derivative that exhibits exceptional stability during bulk 2 e galvanostatic charge–discharge cycling and enabled characterization of a 2 e redox series. A new multi-electron redox system class is hence disclosed that expands the electrochemical cell potential range achievable with main group electrolytes without compromising stability.  相似文献   
55.
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni−N4 and Fe−N4 pair sites is designed for boosting gas-solid CO2 reduction with H2O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)−N−C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g−1 h−1), CH4 (135.35 μmol g−1 h−1) and CH3OH (59.81 μmol g−1 h−1), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe−N−C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)−N−C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni−N−N−Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.  相似文献   
56.
The surface activation of alloys favors their electrochemical interactions, ion diffusivity, and the rapid kinetics of ions and electrons, leading to the formation of self-supported layered double hydroxides (LDHs) in them. However, the formation of LDHs at different depths in the alloy upon activation, their electronic/atomic structures, and their electrochemical charge storage mechanism, have not been thoroughly explored. Herein, Ni ion-substituted CoAl alloys are prepared by arc melting and activated by KOH electrolyte, which is responsible for the modulation of the atomic configuration as confirmed by XRD. Raman depth mapping demonstrates how the LDHs vary with depth upon activation and that the octahedral and tetrahedral symmetry sites of CoO and Co3O4 are responsible for the formation of the layered structures of CoOOH and Co(OH)2, respectively. The activated Ni10Co85Al5 has a superior volumetric capacitance of 4.15 F/cm3 at 0.5 mA/g, which is 38.6 times that of an unactivated one, and excellent cyclic stability up to 5000 cycles, and a voltage of 0.54 V generated from a fabricated supercapacitor cell. X-ray Absorption Spectroscopy (XAS) analysis indicates greater charge transfer by Co than by Ni and the modulation of the local atomic structures facilitates electrochemical charge storage in Ni10Co85Al5. This work presents an easy route for the development of advanced LDHs, and the mechanism of electrochemical charge storage in them.  相似文献   
57.
The perovskite solar cells (PSCs) with high efficiency and stability are in great demand for commercial applications. Although the remarkable photovoltaic feature of perovskite layer plays a great role in improving the PCE of PSCs, the inevitable defects and poor stability of perovskite, etc. are the bottleneck and restrict the commercialization of PSCs. Herein, a review provides a strategy of applying aggregation-induced emission (AIE) molecules, containing passivation functional groups and distinct AIE character, which serves as the alternative materials for fabricating high-efficiency and high-stability PSCs. The methods of introducing AIE molecules to PSCs are also summarized, including additive engineering, interfacial engineering, hole transport materials and so on. In addition, the functions of AIE molecule are discussed, such as defects passivation, morphology modulation, well-matched energy level, enhanced stability, hole transport ability, carrier recombination suppression. Finally, the detailed functions of AIE molecules are offered and further research trend for high performance PSCs based on AIE materials is proposed.  相似文献   
58.
Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl ( 1 ) in the presence of tBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2 ( 2 ). This is a rare example of a 16-electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of 2 , as calculated by DFT, reveals that the HOMO is largely dz2 in character. Complex 2 is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4 ( 3 -BPh4), whose EPR spectral parameters are characteristic of low-spin d7 with an unpaired electron in an orbital of dz2 parentage. This is also consistent with the results of DFT calculations. Despite its 16-electron configuration and the dz2 parentage of the HOMO, the only tractable reactions of 2 involve one electron oxidation to afford 3 .  相似文献   
59.
The new heteroleptic tungsten iodide cluster compound [W6I12(NCC6H5)2] is presented. The synthesis is carried-out from Cs2W6I14 and ZnI2 under solvothermal conditions in benzonitrile solution, yielding red cube-shaped crystals. [W6I12(NCC6H5)2] represents a heteroleptic [W6I8]-type cluster bearing four apical iodides and two benzonitrile ligands. Molecular [W6I12(NCC6H5)2] clusters form a robust hydrogen bridged crystal structure with high thermal stability and high resistibility against hydrolysis. The electronic structure is analyzed by quantum chemical methods of the calculated electron localization function (ELF) and the band structure. Photoluminescence measurements are performed to verify and describe the photophysical properties of [W6I12(NCC6H5)2]. Finally, the photocatalytic properties of [W6I12(NCC6H5)2] are evaluated as a proof-of-concept.  相似文献   
60.
建立了测定电子烟烟液中的氨含量离子色谱法。样品经10 mol·L-1盐酸溶液萃取10 min后,采用Dionex Ion Pac CS16A阳离子交换柱分离,以MSA为淋洗液进梯度洗脱,用电化学检测器检测。氨的质量浓度在0.05~1.0 mg·L-1范围内与峰面积呈线性关系,检出限(3S/N)为0.035μg·g-1,测定下限(10S/N)为0.12μg·g-1。方法用于12种市售品牌电子烟烟液中氨的测定,加标回收率在93.2%~106%之间,测定值的相对标准偏差(n=5)小于4%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号